
Efficient Bayesian inference of absorbance spectra from transmitted intensity spectra
Author(s) -
Johannes Emmert,
Samuel J. Grauer,
Steven Wagner,
Kyle J. Daun
Publication year - 2019
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.026893
Subject(s) - optics , absorbance , absorption spectroscopy , spectroscopy , computer science , spectral line , intensity (physics) , absorption (acoustics) , light intensity , materials science , physics , astronomy , quantum mechanics
High-resolution absorption spectroscopy is a promising method for non-invasive process monitoring, but the computational effort required to evaluate the data can be prohibitive in high-speed, real-time applications. This study presents a fast method to estimate absorbance spectra from transmitted intensity signals. We employ Bayesian statistics to combine a measurement model with prior information about the shape of the baseline intensity and absorbance spectrum. The resulting linear least-squares problem shifts most of the computational effort to a preparation step, thereby facilitating quick processing and low latency for any number of measurements. The method is demonstrated on simulated tunable diode laser absorption spectroscopy data with additive noise and a fluctuating fringe. Results were highly accurate and the method was computationally efficient, having a processing time of only 2 ms per spectrum.