
Hundred-watt level linearly polarized visible supercontinuum generation
Author(s) -
Youshan Tao,
Shengping Chen,
He Xu
Publication year - 2019
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.026044
Subject(s) - supercontinuum , optics , materials science , laser , picosecond , polarization (electrochemistry) , extinction ratio , linear polarization , wavelength , optoelectronics , amplifier , photonic crystal fiber , fiber laser , physics , chemistry , cmos
An all-fiber linearly polarized supercontinuum (SC) laser source with 93 W average output power and spectrum ranging from 520 nm to 2300 nm is experimentally demonstrated. The linearly-polarized SC is generated in a piece of 2.6 m long polarization-maintaining photonic crystal fiber (PM-PCF), pumped by a polarization-maintaining picosecond Yb-doped master oscillator power amplifier (PM-MOPA). The source exhibits a flat spectrum from 600 nm to 1880 nm at -10 dB level except for the residual pump peak. A new method is proposed to measure the polarization extinction ratio (PER) of each single wavelength of the broadband supercontinuum at a high-power level, resulting in larger than 16 dB PER from 900 nm to 1600 nm and larger than 15 dB PER from 540 nm to 650 nm. To our knowledge, this is the first demonstration of hundred-watt level linearly polarized visible SC and the first demonstration of PER measurement of each single wavelength within such a wide spectrum range.