z-logo
open-access-imgOpen Access
Real-time self-calibration PGC-Arctan demodulation algorithm in fiber-optic interferometric sensors
Author(s) -
Zhiyu Qu,
Shuai Guo,
Changbo Hou,
Jun Yang,
Libo Yuan
Publication year - 2019
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.023593
Subject(s) - demodulation , inverse trigonometric functions , computer science , algorithm , total harmonic distortion , optics , interferometry , modulation (music) , physics , acoustics , mathematics , telecommunications , mathematical analysis , channel (broadcasting) , power (physics) , quantum mechanics
Fiber-optic interferometric sensors (FOISs) are widely used in seismometers, hydrophones, and gyroscopes. The arctangent approach of phase-generated carrier (PGC-Arctan) demodulation algorithm is one of the key demodulation techniques in FOISs. The conventional PGC-Arctan demodulation algorithm requires the specific value of the phase modulation depth C to work properly. However, C will variate with laser wavelength, temperature, and humidity in the actual working environment, which leads to harmonic distortion and even demodulation failure. In this paper, a novel PGC demodulation algorithm called self-calibration PGC-Arctan (PGC-Arctan-SC) demodulation algorithm is presented. The proposed algorithm can jointly estimate the accurate C value by the elliptical parameters and C-related components while suppressing nonlinear distortion by ellipse fitting algorithm (EFA). Then C can be calibrated to the specific predefined optimal value by the closed-loop proportion integration differentiation (PID) module. The simulation results are consistent with theoretical analysis, and the all-digital PGC-Arctan-SC demodulation system is implemented on the embedded SoC. The experimental results show that C can be estimated and calibrated accurately in real time. The signal-to-noise and distortion ratio (SINAD) of the PGC-Arctan-SC demodulation output achieves 61.57 dB.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom