z-logo
open-access-imgOpen Access
Dynamic cascade-model-based frequency-scanning interferometry for real-time and rapid absolute optical ranging
Author(s) -
Zhongwen Deng,
Zhigang Liu,
Xingyu Jia,
Wen Deng,
Xin Zhang
Publication year - 2019
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.021929
Subject(s) - ranging , optics , interferometry , cascade , interference (communication) , nonlinear system , physics , computer science , telecommunications , engineering , channel (broadcasting) , quantum mechanics , chemical engineering
A new frequency-scanning interferometry (FSI) scheme using in-phase and quadrature (IQ) detection for real-time and rapid absolute optical ranging is presented. Dynamic measurement with FSI modulates interference signal frequency by both target movement and time-varying optical-frequency scanning rate; hence, a dynamic model is proposed to decouple dynamic absolute distance from the instantaneous frequency of interference signals. The unscented Kalman filter and particle filter algorithms are implemented for the nonlinear first-layer and non-Gaussian second-layer models, respectively. The proposed FSI scheme eliminates nonlinear optical-frequency scanning effects in dynamic measurements and realizes real-time measurement only current observed data are used. Experimental results verify high tracking performance for a vibrating target with approximately 10 μm amplitude and 50-500 Hz frequency.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom