
Bragg scattering from a millimeter-scale periodic structure with extremely small aspect ratios
Author(s) -
I. Jong Kim,
Hong Seung Kim,
June Park,
Byeongjoon Jeong,
DongHo Lee,
Jeong Hwan Bae,
Dong Uk Kim,
Kye-Sung Lee,
Geon-Hee Kim,
Ki Soo Chang
Publication year - 2019
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.021677
Subject(s) - optics , scattering , bragg's law , interference (communication) , beam (structure) , materials science , forward scatter , millimeter , physics , diffraction , channel (broadcasting) , telecommunications , computer science
The periodic structure on the optical surface affects the beam shape and its propagation. As the size of the optical elements becomes larger and its shape becomes complicated, the quantitative analysis of the effect of the periodic structure on the optical surface becomes indispensable given that it is very difficult to completely eliminate the microscopic periodic structures. Herein, we have experimentally investigated Bragg scattering from an optical surface with extremely small aspect ratios (~10 -5 ) and groove densities (0.5 lines/mm). We observed the period of the constructive interference formed due to the propagation of the 0th, 1st, and -1st beam modes caused by Bragg scattering. When the periodic structure has a modulation depth of ± 50 nm, the intensity increase of constructive interference between the beam modes formed by Bragg scattering was > 10 times greater than the intensity of a flat surface at the propagation distance at which constructive interference was most pronounced. This study is envisaged to open new avenues for the quantification of the effect of periodic structures based on the observation of the interference on the beam profile formed by Bragg scattering during the beam propagation.