z-logo
open-access-imgOpen Access
Divide and conquer: real-time maximum likelihood fitting of multiple emitters for super-resolution localization microscopy
Author(s) -
Luchang Li,
Bo Xin,
Weibing Kuang,
Zhiwei Zhou,
ZhenLi Huang
Publication year - 2019
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.021029
Subject(s) - common emitter , computer science , image resolution , divide and conquer algorithms , microscopy , image processing , resolution (logic) , population , optics , artificial intelligence , computer vision , algorithm , image (mathematics) , physics , optoelectronics , demography , sociology
Multi-emitter localization has great potential for maximizing the imaging speed of super-resolution localization microscopy. However, the slow image analysis speed of reported multi-emitter localization algorithms limits their usage in mostly off-line image processing with small image size. Here we adopt the well-known divide and conquer strategy in computer science and present a fitting-based method called QC-STORM for fast multi-emitter localization. Using simulated and experimental data, we verify that QC-STORM is capable of providing real-time full image processing on raw images with 100 µm × 100 µm field of view and 10 ms exposure time, with comparable spatial resolution as the popular fitting-based ThunderSTORM and the up-to-date non-iterative WindSTORM. This study pushes the development and practical use of super-resolution localization microscopy in high-throughput or high-content imaging of cell-to-cell differences or discovering rare events in a large cell population.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom