
Broadband terahertz antireflective microstructures on quartz crystal surface by CO2 laser micro-processing
Author(s) -
Du Wang,
Yaguo Li,
Chuanchao Zhang,
Wei Liao,
Zeyu Li,
Qinghua Zhang,
Qiao Xu
Publication year - 2019
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.018351
Subject(s) - materials science , optics , anti reflective coating , transmittance , laser , terahertz radiation , optoelectronics , crystal (programming language) , sapphire , fused quartz , quartz , coating , nanotechnology , physics , computer science , composite material , programming language
Anti-reflection (AR) coating is a critical technology and an ongoing challenge for terahertz systems. The subwavelength structure (SWS) is an effective AR method, whereas the current manufacturing techniques, such as chemical etching and ultrafast laser processing, are low-efficient and low-quality for processing structures at the hundred-micron scale on hard brittle materials. We present a study of broadband SWSs directly ablated on the surface of quartz crystal by precisely controlled CO 2 laser pulses, instead of commonly used ultra-fast lasers. The processing time of SWS can be shortened by two orders of magnitude compared with that by ultra-fast laser pulses. The SWS samples exhibit excellent AR properties with maximum transmittance of 97% at 0.71 THz, peak transmittance improvement of 13.5%, and optimal efficiency spectrum of 0.28-1.21 THz with transmittance >90%. The AR properties of SWS samples are in agreement with the simulated expectation and exist over a wide range of incidence angles up to ∼40°. The imaging of an object using SWS as the substrate shows an obvious improvement in imaging quality. We present an efficient and practical way to improve the transmission of optical components of materials, such as quartz crystal, alumina, and sapphire, in the terahertz band.