z-logo
open-access-imgOpen Access
S-parameters, non-Hermitian ports and the finite-element implementation in photonic devices with đť’«đť’Ż-symmetry
Author(s) -
Bei Wu,
Zhuoran Wang,
Weijin Chen,
Zhongfei Xiong,
Jing Xu,
Yahong Chen
Publication year - 2019
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.017648
Subject(s) - hermitian matrix , physics , orthogonality , coupled mode theory , photonics , waveguide , optics , finite element method , hermitian function , modal , photonic crystal , quantum mechanics , mathematics , geometry , refractive index , materials science , polymer chemistry , thermodynamics
In Hermitian photonic devices, S-parameters, i.e., the elements of a scattering matrix based on integrated power flux and Hermitian modal orthogonality, are used to account for the transmission or reflection of light from one port to another. The definition of S-parameters in Hermitian settings becomes inappropriate in the non-Hermitian optical environment. Here we revisit the fundamental problems associated with extracting the S-parameters of light in photonic -symmetric devices, i.e., waveguides or coupled waveguide-cavity systems, wherein the waveguide ports themselves may also be non-Hermitian. We first use the bi-orthogonal inner product that restores the modal orthogonality on the waveguide ports containing balanced gain and losses to quantify the modal overlapping instead of Hermitian inner product. Secondly, a finite element implementation is proposed and realized to extract the S-parameters on non-Hermitian ports. Lastly, we illustrate our approach of calculating the S-parameters on non-Hermitian ports via two waveguide-lattice structures. The numerical results of S-parameters are validated against the constraints imposed by reciprocity and -symmetry.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom