
Single SLM full-color holographic three-dimensional video display based on image and frequency-shift multiplexing
Author(s) -
Shufeng Lin,
Haitao Cao,
Eun-Soo Kim
Publication year - 2019
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.015926
Subject(s) - optics , holography , multiplexing , spatial light modulator , physics , holographic display , fourier transform , spatial frequency , computer science , telecommunications , quantum mechanics
A single spatial-light-modulator (SLM) full-color holographic 3-D video display based on image and frequency-shift multiplexing (IFSM) is proposed. In the frequency-shift multiplexing (FSM), three-color holograms are multiplied with their respective phase factors for shifted-separations of their corresponding frequency-spectrums on the Fourier plane. This FSM process, however, causes three-color images to be reconstructed at the center-shifted locations depending on their multiplied phase factors. Center-shifts of those color images due to the FSM can be balanced out just by generation of three-color holograms whose centers are pre-shifted to the opposite directions to those of the image shifts with the novel-look-up-table (NLUT) based on its shift-invariance property, which is called image-shift multiplexing (ISM). These image and frequency-shifted holograms are then multiplexed into a single color-multiplexed hologram and loaded on the SLM, and from which a full-color 3-D image can be reconstructed on the optical 4-f lens system without any color dispersion just by employing a simple pinhole filter mask. Fourier-optical analysis and experiments with 3-D objects in motion confirm the feasibility of the proposed system.