Tunable single-frequency lasing in a microresonator
Author(s) -
Simon J. Herr,
K. Buse,
Ingo Breunig
Publication year - 2019
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.015351
Subject(s) - lasing threshold , laser linewidth , laser , whispering gallery wave , optics , resonator , materials science , optoelectronics , whispering gallery , laser power scaling , free spectral range , wavelength , laser pumping , gain switching , physics
Whispering-gallery-mode resonators made of laser-active materials can serve as efficient microphotonic coherent light sources. However, the majority of experimental realizations relies on expensive pump light sources like narrow-linewidth or pulsed laser systems, which is inappropriate for most applications. In order to overcome this, we present a whispering-gallery laser system without the need for an expensive pump light source and at the same time with unprecedented laser performance: A laser-active resonator made of Nd:YVO 4 is non-resonantly excited, employing a low-cost laser diode without any external frequency stabilization, emitting up to 100 mW optical power around 810 nm wavelength. Continuous-wave single-frequency lasing at 1064 nm wavelength is achieved with directed laser light emission in the mW-regime. The temporal power and frequency stability are within ±1.5 % and ±30 MHz, respectively. Modehop-free frequency fine-tuning is achieved exceeding 11 GHz tuning range by changing the temperature of the cavity. Faster tuning can be expected when applying geometric or electro-optic instead of thermal tuning.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom