z-logo
open-access-imgOpen Access
Speckle rotation decorrelation based single-shot video through scattering media
Author(s) -
Yaoyao Shi,
Youwen Liu,
Wei Sheng,
Jiming Wang,
Tong Wu
Publication year - 2019
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.014567
Subject(s) - speckle pattern , computer vision , decorrelation , artificial intelligence , computer science , optics , rotation (mathematics) , point spread function , speckle imaging , physics
Optical imaging and tracking moving objects through scattering media is a challenge with important applications. However, previous works suffer from time-consuming recovery process, object complexity limit, or object information lost. Here we present a method based on the speckle rotation decorrelation property. The rotational speckles detected at short intervals are uncorrelated and multiplexed in a single-shot camera image. Object frames of the video are recovered by cross-correlation deconvolution of the camera image with a computationally rotated point spread function. The near real-time recovery provides sharp object image frames with accurate object relative positions, exact movement velocity, and continuous motion trails. This multiplexing technique has important implications for a wide range of real-world imaging scenarios.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom