
Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks
Author(s) -
Yuyin Li,
Zhengqi Liu,
Houjiao Zhang,
Peng Tang,
Biao Wu,
Guiqiang Liu
Publication year - 2019
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.011809
Subject(s) - materials science , surface plasmon , optoelectronics , optics , plasmon , broadband , polarization (electrochemistry) , absorption (acoustics) , surface plasmon polariton , physics , composite material , chemistry
We present an ultra-broadband perfect absorber composed of metal-insulator composite multilayer (MICM) stacks by placing the insulator-metal-insulator (IMI) grating on the metal-insulator-metal (MIM) film stacks. The absorber shows over 90% absorption spanning between 570 nm and 3539 nm, with an average absorption of 97% under normal incidence. The ultra-broadband perfect absorption characteristics are achieved by the synergy of guided mode resonances (GMRs), localized surface plasmons (LSPs), propagating surface plasmons (PSPs), and cavity modes. The polarization insensitivity is demonstrated by analyzing the absorption performance over arbitrary polarization angles. The ultra-broadband absorption remains more than 80% over a wide incident angle up to 50°, for both transverse electric (TE) and transverse magnetic (TM) modes. The ultra-broadband perfect absorber has tremendous potential for various applications, such as solar thermal energy harvesting, thermoelectrics, and imaging.