
Super chirped rogue waves in optical fibers
Author(s) -
Shihua Chen,
Yi Zhou,
Lili Bu,
Fabio Baronio,
J. M. Soto-Crespo,
Dumitru Mihalache
Publication year - 2019
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.011370
Subject(s) - rogue wave , superposition principle , physics , chirp , optics , amplitude , nonlinear schrödinger equation , nonlinear system , quantum mechanics , laser
The super rogue wave dynamics in optical fibers are investigated within the framework of a generalized nonlinear Schrödinger equation containing group-velocity dispersion, Kerr and quintic nonlinearity, and self-steepening effect. In terms of the explicit rogue wave solutions up to the third order, we show that, for a rogue wave solution of order n, it can be shaped up as a single super rogue wave state with its peak amplitude 2n+1 times the background level, which results from the superposition of n(n+1)/2 Peregrine solitons. Particularly, we demonstrate that these super rogue waves involve a frequency chirp that is also localized in both time and space. The robustness of the super chirped rogue waves against white-noise perturbations as well as the possibility of generating them in a turbulent field is numerically confirmed, which anticipates their accessibility to experimental observation.