
Tailoring grating strip widths for optimizing infrared absorption signals of an adsorbed molecular monolayer
Author(s) -
Tobias W. W. Maß,
Vu Hoa Nguyen,
Uwe Schnakenberg,
Thomas Taubner
Publication year - 2019
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.010524
Subject(s) - grating , materials science , optics , absorption (acoustics) , infrared , monolayer , optoelectronics , infrared spectroscopy , nanotechnology , chemistry , physics , organic chemistry , composite material
Metal structures with resonances in the mid-infrared spectral range enable an increased sensitivity for detecting molecular vibrational signals. 1D gold strip gratings have already proven potential in surface-enhanced infrared absorption (SEIRA) experiments, as grating resonances and local electric field enhancement can be spectrally tuned by changing the grating period. Here, we identify the grating strip width as another important design parameter, which is investigated for further optimization of molecular absorption signal enhancement in SEIRA experiments. Previous literature used gratings to increase light absorption in relatively thick polymer layers. Here, we demonstrate the capability of gold strip gratings fabricated on a CaF 2 substrate to enhance the CH 2 vibrational modes of a thiol-based monolayer of MHDA. An optimal choice of the strip width w = 1.33 μm enables a maximum vibrational signal enhancement factor of around 84, when normalized to microscopic GIR measurements of an MHDA monolayer on an extended gold surface. Numerical simulations demonstrate the broadband local field enhancement of gold strip gratings, which are suitable for enhancing multiple vibrational modes in a large hot-spot volume.