Type-II ZnO/ZnS core-shell nanowires: Earth-abundant photoanode for solar-driven photoelectrochemical water splitting
Author(s) -
Mostafa Afifi Hassan,
Muhammad Ali Johar,
Aadil Waseem,
Indrajit V. Bagal,
JunSeok Ha,
SangWan Ryu
Publication year - 2019
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.00a184
Subject(s) - heterojunction , materials science , nanowire , photocurrent , water splitting , nanotechnology , atomic layer deposition , optoelectronics , chemical bath deposition , layer (electronics) , substrate (aquarium) , chemical vapor deposition , fabrication , thin film , photocatalysis , chemistry , medicine , biochemistry , oceanography , alternative medicine , pathology , geology , catalysis
A core-shell structure, formed in a nanostructured photoanode, is an effective strategy to achieve high solar-to-hydrogen conversion efficiency. In this study, we present a facile and simple synthesis of a unique vertically aligned ZnO/ZnS core-shell heterostructure nanowires (NWs) on a Si substrate. Well-aligned ZnO NWs were grown on Si (100) substrates on a low-temperature ZnO buffer layer by metal-organic chemical vapor deposition. The ZnO NWs were then coated with various thicknesses of ZnS shell layers using atomic layer deposition. The structural characterizations exhibit the well-developed ZnO/ZnS core-shell NWs heterostructure. The as-prepared ZnO/ZnS core-shell NWs was applied as photoanode for photoelectrochemical (PEC) water splitting. This unique ZnO/ZnS core-shell NWs photoanode shows photocurrent density of 1.21 mA cm -2 , which is 8.5 times higher than bare ZnO NWs. The PEC performance and the applied-bias-photon-to-current conversion efficiency of ZnO/ZnS core-shell NWs photoanode are further improved with the optimized ZnS shell. The type-II band alignment of the heterostructure photoanode is the key factor for their excellent PEC performance. Importantly, this type of core-shell NWs heterostructure provides useful insights into novel electrode design and fabrication based on earth abundant materials for low-cost solar fuel generation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom