z-logo
open-access-imgOpen Access
Enhancing THz generation in photomixers using a metamaterial approach
Author(s) -
Daniel J. Ironside,
Rafael SalasMontiel,
PaiYen Chen,
Khai Q. Le,
Andrea Alù,
Seth R. Bank
Publication year - 2019
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.009481
Subject(s) - terahertz radiation , materials science , optoelectronics , optics , metamaterial , semiconductor , antenna (radio) , laser , physics , telecommunications , computer science
Photomixers at THz frequencies offer an attractive solution to fill the THz gap; however, conventional photomixer designs result in low output powers, on the order of microwatts, before thermal failure. We propose an alternative photomixer design capable of orders of magnitude enhancement of continuous-wave THz generation using a metamaterial approach. By forming a metal-semiconductor-metal (MSM) cavity through layering an ultrafast semiconductor material between subwavelength metal-dielectric gratings, tailored resonance can achieve ultrathin absorbing regions and efficient heat sinking. When mounted to a tunable E-patch antenna, gratings also act as vertically biased electrodes, further enhancing photoconductive gain by reducing the carrier path length to nanoscales. Thus, through these multiplicative enhancements, the metamaterial-enhanced photomixer is projected to generate THz powers in the milliwatt range and exceed the Manley-Rowe limit for frequencies less than 2 THz.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom