z-logo
open-access-imgOpen Access
Fourier ptychographic microscopy reconstruction with multiscale deep residual network
Author(s) -
Jizhou Zhang,
Tingfa Xu,
Ziyi Shen,
Yifan Qiao,
Yizhou Zhang
Publication year - 2019
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.008612
Subject(s) - computer science , phase retrieval , artificial intelligence , deep learning , residual , fourier transform , artificial neural network , iterative reconstruction , hyperparameter , projection (relational algebra) , image resolution , pattern recognition (psychology) , optics , computer vision , algorithm , physics , quantum mechanics
Fourier ptychographic microscopy (FPM) is a newly developed microscopic technique for large field of view, high-resolution and quantitative phase imaging by combining the techniques from ptychographic imaging, aperture synthesizing and phase retrieval. In FPM, an LED array is utilized to illuminate the specimen from different angles and the corresponding intensity images are synthesized to reconstruct a high-resolution complex field. As a flexible and low-cost approach to achieve high-resolution, wide-field and quantitative phase imaging, FPM is of enormous potential in biomedical applications such as hematology and pathology. Conventionally, the FPM reconstruction problem is solved by using a phase retrieval method, termed Alternate Projection. By iteratively updating the Fourier spectrum with low-resolution-intensity images, the result converges to a high-resolution complex field. Here we propose a new FPM reconstruction framework with deep learning methods and design a multiscale, deep residual neural network for FPM reconstruction. We employ the widely used open-source deep learning library PyTorch to train and test our model and carefully choose the hyperparameters of our model. To train and analyze our model, we build a large-scale simulation dataset with an FPM imaging model and an actual dataset captured with an FPM system. The simulation dataset and actual dataset are separated as training datasets and test datasets, respectively. Our model is trained with the simulation training dataset and fine tuned with the fine-tune dataset, which contains actual training data. Both our model and the conventional method are tested on the simulation test dataset and the actual test dataset to evaluate the performances. We also show the reconstruction result of another neural network-based method for comparison. The experiments demonstrate that our model achieves better reconstruction results and consumes much less time than conventional methods. The results also point out that our model is more robust under system aberrations such as noise and blurring (fewer intensity images) compared with conventional methods.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here