Fabrication and analysis of tantalum pentoxide optical waveguide resonator of high thermal stability
Author(s) -
AnnKuo Chu,
Yuyan Lu,
Yuan-Yao Lin
Publication year - 2019
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.006629
Subject(s) - tantalum pentoxide , materials science , optics , resonator , waveguide , thermal stability , cladding (metalworking) , optoelectronics , tantalum , refractive index , thin film , dielectric , nanotechnology , composite material , physics , quantum mechanics , metallurgy
We fabricated waveguide resonators with high thermal stability using tantalum pentoxide thin film covered with PECVD silicon dioxide cladding. Without complex athermal design, low temperature dependence of 7.4 pm/°C and 8.15 pm/°C were measured in waveguide Bragg gratings (WBG) and Fabry-Perot resonator sandwiched by a pair of identical WBG mirrors, respectively. Suggested by semi-analytical perturbation calculations, the athermal properties of tantalum pentoxide waveguide grating are attributed not only to the low thermo-optical coefficient in tantalum pentoxide thin film but also to the strong chromatic dispersion of the guided modes. Guidelines are proposed to design waveguide-based frequency devices of low thermo-optical effect without complex athermal design.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom