Back propagation neutral network based signal acquisition for Brillouin distributed optical fiber sensors
Author(s) -
Zhiyuan Cao,
Nan Guo,
HoKeung Ng,
Kuanglu Yu,
Kaiqiang Gao
Publication year - 2019
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.004549
Subject(s) - optics , brillouin scattering , optical fiber , fiber optic sensor , brillouin zone , signal (programming language) , distributed acoustic sensing , signal processing , materials science , physics , computer science , telecommunications , radar , programming language
This manuscript proposes a method based on back propagation (BP) neural network and the spectral subtraction method to quickly obtain sensing information in Brillouin fiber optics sensors. BP neural network's characteristics which can realize any complex nonlinear mapping help to determine the frequency shift section(s) information. The training function, transfer function and number of hidden layer nodes of BP neural network are determined with experimental data. The experimental results show that comparing with traditional Lorentz fitting algorithm and edge detection with Sobel operator, the BP neural network is about 1/12 in terms of time complexity with the Lorentz algorithm, about 1/9 with the edge detection based on Sobel operator; while the respective accuracy on determine the frequency shifted section(s) has improved by 79.4% and 27.9%.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom