
Reducing the pulse repetition rate of picosecond dissipative soliton passively mode-locked fiber laser
Author(s) -
Qiao Lu,
Jin Ma,
Dian Duan,
Xuechun Lin,
Qinghe Mao
Publication year - 2019
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.002809
Subject(s) - optics , fiber laser , picosecond , materials science , laser , dissipative soliton , mode locking , bandwidth limited pulse , pulse (music) , soliton , ultrashort pulse , physics , nonlinear system , quantum mechanics , detector
This paper proposes and demonstrates a method to reduce the repetition rate of all- polarization-maintaining (PM) linear-cavity picosecond dissipative soliton passively mode-locked fiber lasers. An optical coupler (OC) is inserted into the cavity to extract pulse energy, and the cavity length is increased using a low-nonlinear coefficient large-mode field fiber at the rear end of the OC, where the propagated pulse has lower energy. This enables the nonlinear phase shift to be within the tolerated value of the single pulse mode-locking even with a considerably increased cavity length; this allows reducing the laser repetition rate considerably without substantially changing the pulse characteristics. Using the proposed method, for a 0.3-nm filter bandwidth, the laser repetition rate is successfully reduced to 1.77 MHz with a nearly Fourier-transform limited pulse duration of 10 ps; it can be further reduced by optimizing the OC split ratio. The proposed method can be applied to reduce the repetition rate for a picosecond dissipative soliton passively mode-locked fiber laser with an arbitrary bandwidth filter.