Open Access
Ultrafast discrete swept source based on dual chirped combs for microscopic imaging
Author(s) -
Yucong Duan,
Xinyong Dong,
Lei Zhang,
Yaoshuai Li,
Zihui Lei,
Liao Chen,
Xi Zhou,
Chi Zhang,
Chi Zhang
Publication year - 2019
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.002621
Subject(s) - optics , laser linewidth , frame rate , ultrashort pulse , physics , wavelength , bandwidth (computing) , materials science , femtosecond , image resolution , laser , computer science , telecommunications
An inertial-free, ultrafast frequency comb source based on two chirped optical frequency combs (OFCs) is proposed and experimentally demonstrated. The high linearity frequency sweeping is realized by the Vernier effect between the two OFCs rather than any mechanical motion component, so that good stability and reliability are ensured and no recalibration or resampling process is required. Swept rate up to 1 MHz is realized while keeping a narrow instantaneous linewidth of 0.03 nm, thanks to the extra-cavity frequency sweeping method. The wavelength step is proportional to the swept rate (3.8 pm at 10 kHz), and can be tuned by changing the repetition rate difference between the two OFCs. This swept source is applied for high-speed wavelength encoded imaging and achieves 4.4-μm spatial resolution at a 329-kHz frame rate. Compared with the traditional time-stretch microscopy, the signal acquisition bandwidth decreased from 3.8 GHz to below 90 MHz to achieve the same spatial resolution. Furthermore, the exposure time for a specific wavelength is much longer due to the discrete sweeping feature, which is a benefit for higher sensitivity. This discrete swept source provided a promising low-cost option for high-speed biomedical imaging systems and high-accuracy spectroscopy.