z-logo
open-access-imgOpen Access
An advanced laser headlight module employing highly reliable glass phosphor
Author(s) -
Yung-Peng Chang,
Jin-Kai Chang,
HsinAn Chen,
Shih-Hsin Chang,
Chun-Nien Liu,
Pin Han,
Wood-Hi Cheng
Publication year - 2019
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.001808
Subject(s) - phosphor , materials science , optics , dichroic filter , laser , optoelectronics , luminous flux , diode , blue laser , dichroic glass , wavelength , light source , physics
An advanced laser headlight module (LHM) employing highly reliable glass phosphor is demonstrated. The novel glass-based YAG phosphor-converter layers fabricated by low-temperature of 750°C exhibited better thermal stability. The LHM consisted of a 5 × 1 blue laser diode array, an aspherical lens, a glass phosphor-converter layer with an aluminum thermal dissipation substrate, and a dichroic filter to allow pass blue light and reflect yellow phosphor light. The 5 × 1 blue laser array was packaged with five blue lasers having optical power of 1.2 W per laser. The LHM exhibited total output optical power of 6 W, luminous flux of 1860 lm, relative color temperature of 4100 K, and efficiency of more than 310 lm/W. The high-beam patterns of the LHMs were measured to be 45,000 luminous intensity (cd) at 0°, 31,000 cd at ± 2.5°, and 12,500 cd at ± 5°, which were well satisfied the ECE R112 class B regulation. The proposed high-performance LHM with highly reliable glass-based phosphor-converter layer fabricated by low temperature is favorable as one of the promising LHM candidates for use in the next-generation automobile headlight applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom