
Metropolis Monte Carlo simulation scheme for fast scattered X-ray photon calculation in CT
Author(s) -
Yuan Xu,
Yusi Chen,
Zhen Tian,
Xun Jia,
Linghong Zhou
Publication year - 2019
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.001262
Subject(s) - monte carlo method , photon , physics , detector , benchmark (surveying) , imaging phantom , monte carlo method for photon transport , optics , signal (programming language) , path (computing) , algorithm , computer science , computational physics , dynamic monte carlo method , direct simulation monte carlo , mathematics , statistics , geodesy , programming language , geography
Monte Carlo (MC) method is commonly considered as the most accurate approach for particle transport simulation because of its capability to precisely model physics interactions and simulation geometry. Conventionally, MC simulation is performed in a particle-by-particle fashion. In certain problems such as computing scattered X-ray photon signal at a detector of CT, the conventional simulation scheme suffers from low efficiency mainly due to the fact that abundant photons are simulated but do not reach the detector. The computational resources spent on those photons are therefore wasted. To solve this problem, this study develops a novel GPU-based Metropolis MC (gMMC) with a novel path-by-path simulation scheme and demonstrates its effectiveness in an example problem of scattered X-ray photon calculation in CT. In contrast to the conventional MC approach, gMMC samples an entire photon path extending from the X-ray source to the detector using Metropolis-Hasting algorithm. The path-by-path simulation scheme ensures contribution of every sampled event to the signal of interest, improving overall efficiency. We benchmark gMMC against an in-house developed GPU-based MC tool, gMCDRR, which performs simulations in the conventional particle-by-particle fashion. gMMC reaches speed up factors of 37~48 times in simple phantom cases and 20-34 times in real patient cases. The results calculated by gMCDRR and gMMC agree well with average differences < 3%.