
Sparsity-based continuous wave terahertz lens-free on-chip holography with sub-wavelength resolution
Author(s) -
Zeyu Li,
Qiang Yan,
Yu Qin,
Weipeng Kong,
Guangbin Li,
Mingrui Zou,
Du Wang,
Z. Y. You,
Xun Zhou
Publication year - 2019
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.000702
Subject(s) - optics , holography , terahertz radiation , digital holography , pixel , physics , microbolometer , lens (geology) , laser , image resolution , detector , computer science , bolometer
We demonstrate terahertz (THz) lens-free in-line holography on a chip in order to achieve 40 μm spatial resolution corresponding to ~0.7λ with a numerical aperture of ~0.87. We believe that this is the first time that sub-wavelength resolution in THz holography and the 40 μm resolution were both far better than what was already reported. The setup is based on a self-developed high-power continuous wave THz laser at 5.24 THz (λ = 57.25 μm) and a high-resolution microbolometer detector array (640 × 512 pixels) with a pitch of 17 μm. This on-chip in-line holography, however, suffers from the twin-image artifacts which obfuscate the reconstruction. To address this problem, we propose an iterative optimization framework, where the conventional object constraint and the L 1 sparsity constraint can be combined to efficiently reconstruct the complex amplitude distribution of the sample. Note that the proposed framework and the sparsity-based algorithm can be applied to holography in other wavebands without limitation of wavelength. We demonstrate the success of this sparsity-based on-chip holography by imaging biological samples (i.e., a dragonfly wing and a bauhinia leaf).