
Enhanced see-through near-eye display using time-division multiplexing of a Maxwellian-view and holographic display
Author(s) -
Jin Su Lee,
Yoo Kwang Kim,
Mu Young Lee,
Yong Hyub Won
Publication year - 2019
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.27.000689
Subject(s) - holographic display , holography , multiplexing , computer science , stereo display , rendering (computer graphics) , optics , computer graphics (images) , computer vision , image quality , field of view , display device , virtual image , spatial light modulator , artificial intelligence , physics , image (mathematics) , telecommunications , operating system
In this paper, we suggest the improved integration of a holographic display and a Maxwellian-view display using time-division multiplexing and describe an image rendering process for the proposed system. In general, the holographic displays have a resolution limit when used to represent a virtual 3D scene. In the proposed system, the holographic display processed relatively few layers of the virtual 3D scene, while the remaining objects were processed with a Maxwellian-view display to which was applied a Gaussian smoothing filter. Hence, we obtained the retaining holographic image quality, expanding the field of view, and reducing the computation time of the proposed system. The holographic display of the proposed system had an image size of 28 mm × 28 mm with a field of view of 1.02° and a 10.8 mm eye box. The Maxwellian-view display had an image size of 230 mm × 230 mm with a field of view of 22.6 ° and a 0.9 mm eye box diameter. Each display was integrated in time-division multiplexing of 40 Hz, and the proposed system was successfully verified.