Low-threshold ultraviolet stimulated emissions from large-sized single crystalline ZnO transferable membranes
Author(s) -
Yanfang Zhang,
Feifei Qin,
Jie Zhu,
Xuanhu Chen,
J. Li,
Dongmin Tang,
Yi Yang,
Fangfang Ren,
Chunxiang Xu,
Shulin Gu,
Rong Zhang,
Youdou Zheng,
Jiandong Ye
Publication year - 2018
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.26.031965
Subject(s) - materials science , optoelectronics , laser , ultraviolet , exciton , membrane , lasing threshold , optics , amplified spontaneous emission , wavelength , chemistry , biochemistry , physics , quantum mechanics
Wide-bandgap inorganic semiconductors based ultraviolet lasers bring versatile applications with significant advantages including low-power consumption, high-power output, robustness and long-term operation stability. However, flexible membrane lasers remain challenging predominantly due to the need for a lattice matched supporting substrate. Here, we develop a simple laser liftoff process to make freestanding single crystalline ZnO membranes that demonstrate low-threshold ultraviolet stimulated emissions together with large sized dimension (> 2 mm), ultralow-weight (m/A<15 g/m 2 ) and excellent flexibility. The 2.6 μm-thick crack-free ZnO membrane exhibits well-retained single crystallinity and enhanced excitonic emissions while the defect-related emissions are completely suppressed. The inelastic exciton-exciton scattering stimulated emissions with increased spontaneous emission rate is obtained with a reduced threshold of 0.35 MW/cm 2 in the ZnO membrane transferred onto a flexible polyethylene naphthalate substrate. Theoretical simulations reveal that it is a synergetic effect of the increased quantum efficiency via Purcell effect and the improved optical gain due to vertical directional waveguiding of the membrane, which functions as a Fabry-Perot photonic resonator due to the refractive index contrast at ZnO-air boundaries. With simple architecture, efficient exciton recombination and easy fusion with waveguide system, the ZnO membranes provide an alternative platform to develop compact low-threshold ultraviolet excitonic lasers.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom