Kaleidoscope vortex lasers generated from astigmatic cavities with longitudinal-transverse coupling
Author(s) -
Ting Lü,
Teng-De Huang,
Guan-Ying Chiou
Publication year - 2018
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.26.031464
Subject(s) - kaleidoscope , optical vortex , optics , physics , vortex , superposition principle , gaussian beam , beam (structure) , quantum mechanics , mathematical optimization , mathematics , thermodynamics
We propose an efficient and robust method to generate the kaleidoscope vortex beam by employing an astigmatic laser cavity with an extra-cavity cylindrical lens. The kaleidoscope vortex beam is arising from the superposition of Laguerre-Gaussian modes with the longitudinal-transverse coupling effect in the laser cavity. The superposed Laguerre-Gaussian mode leads to the formation of complex phase singularities and implies the participation of different optical orbital angular momentum involved in a single kaleidoscope vortex beam. We experimentally demonstrate that a series of kaleidoscope vortex beams with different symmetry are systematically achieved by using a simple setup. The output power of the laser is dependent on the cavity length. This approach is expected to create high-order optical vortex beams and pave the way for optical entanglement.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom