
Micro-tomography via single-pixel imaging
Author(s) -
Junzheng Peng,
Manhong Yao,
Jiaming Cheng,
Zibang Zhang,
Shiping Li,
Guoan Zheng,
Jingang Zhong
Publication year - 2018
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.26.031094
Subject(s) - pixel , optics , digital micromirror device , detector , tomographic reconstruction , medical imaging , image resolution , ghost imaging , tomography , physics , computer science , artificial intelligence
Tomographic imaging allows for the cross-sectional imaging of specimen, whereas single-pixel imaging can produce image only with a spatial non-resolved detector. Here we propose a compact tomographic imaging system combining single-pixel imaging. This approach uses a digital micromirror device (DMD) to encode the spatial information of specimen and employs an array of single-pixel detectors to record the light signals from different directions. For each single-pixel detector, we can retrieve an image of the specimen from a unique perspective angle. Based on the retrieved images, we can realize tomographic imaging, such as intensity images refocusing and three-dimensional (3D) differential-phase-contrast imaging, without mechanically scanning the specimen. Experimental results also demonstrate that the micro-tomographic images with 384×384 pixels can be simultaneously realized only with an array of 5×6 single-pixel detectors. Furthermore, due to the broad operational spectrum of the single-pixel detector, the proposed method is a good candidate to realize tomographic imaging with the non-visible light wavebands, such as terahertz and x-ray, thus it would open up opportunities in many life science and engineering fields.