z-logo
open-access-imgOpen Access
Delta-sigma-modulated IFoF transmission system assisted by a correlative-level encoding technique
Author(s) -
Seunghyun Jang,
Bonghyuk Park,
Songcheol Hong,
KwangSeon Kim,
Kwang-Chun Lee
Publication year - 2018
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.26.029916
Subject(s) - bandwidth (computing) , delta sigma modulation , encoder , physics , quantization (signal processing) , sigma , computer science , optics , amplitude , telecommunications , electronic engineering , algorithm , engineering , quantum mechanics , operating system
A delta-sigma-modulated intermediate-frequency-over-fiber (IFoF) transmission system assisted by a correlative-level coding technique is proposed and experimentally demonstrated. Unlike conventional delta-sigma IFoF systems with multiple output levels to achieve higher signal quality or larger capacity, a correlative-level encoder is exploited as a second modulator preceded by the delta-sigma modulator. The encoder compresses the bandwidth of the delta-sigma modulated signal by creating a correlation between adjacent signal symbols. As a result, the sampling frequency of the delta-sigma modulator in the proposed system can be increased beyond the transmission bandwidth of the IFoF system, considerably improving the in-band signal quality and the transmission capacity over the conventional multi-level approach. This is because the quantization noise from the delta-sigma modulation in the proposed scheme is more aggressively pushed away from the signal bandwidth with the high sampling frequency. According to experimental results, the proposed link provides at least a 40% larger transmission capacity for similar in-band signal quality or 2.1% better average EVM performance for the same capacity than the conventional four-level pulse-amplitude-modulation delta-sigma IFoF systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom