z-logo
open-access-imgOpen Access
Single-shot aperture-scanning Fourier ptychography
Author(s) -
Xiaoliang He,
Cheng Liu,
Jianqiang Zhu
Publication year - 2018
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.26.028187
Subject(s) - ptychography , optics , wavefront , fourier transform , resolution (logic) , aperture (computer memory) , interferometry , materials science , physics , computer science , diffraction , artificial intelligence , quantum mechanics , acoustics
Aperture-scanning Fourier ptychography [Opt. Express22, 13586 (2014)] is a promising non-interferometric wavefront measurement technique. It eliminates the thin-sample requirement in typical Fourier ptychography employing angle-varying illumination. However, as aperture-scanning Fourier ptychography is based on step-by-step scanning, it requires long data acquisition time and a high-stability optical system. In this paper, we propose a single-shot aperture-scanning Fourier ptychography method. In our method, multiple low-resolution images are collected in a single shot by inserting a Dammann grating at a certain distance before the aperture, and the images are subsequently converted to a high-resolution complex wavefront. Compared with scanning-based aperture-scanning Fourier ptychography, the total acquisition time of the proposed method is dramatically reduced. The feasibility of our proposed method is demonstrated by proof-of-concept experiments.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom