Random laser based method for direct measurement of scattering properties
Author(s) -
Federico Tommasi,
Emilio Ignesti,
Lorenzo Fini,
Fabrizio Martelli,
Stefano Cavalieri
Publication year - 2018
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.26.027615
Subject(s) - scattering , optics , random laser , materials science , calibration , light scattering , lasing threshold , laser , coherent backscattering , mean free path , optical path , forward scatter , physics , quantum mechanics
Optical sensing is a very important method for investigating different kinds of samples. Recently, we proposed a new kind of optical sensor based on random lasing [ Sci. Rep.6, 35225 (2016)], that couples the advantages of stimulated emission in detecting small variations on scattering properties of a sensed material, to the needs of no alteration of the sample under investigation. Here, we present a method to achieve a quantitative measurement of the scattering properties of a material. The results on samples of calibrated microspheres show a dependence of the peak intensity of the emission spectrum on the transport mean free path of the light within the sample, whatever the dimension (down to ≈100 nm of particle diameter) and the concentration of scatterers dispersed in the sensed material. A direct and fast measurement of the scattering properties is obtained by calibration with a well-known and inexpensive reference medium.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom