
Reconfigurable three-dimensional mode (de)multiplexer/switch via triple-silicon-ITO-waveguide directional coupler
Author(s) -
Weifeng Jiang
Publication year - 2018
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.26.026257
Subject(s) - multiplexer , waveguide , optoelectronics , materials science , optics , multiplexing , optical switch , physics , telecommunications , computer science
A reconfigurable mode (de)multiplexer/switch (RMDS) is a pivotal component for the mode routing in mode-division multiplexing (MDM) networks. Here, we propose a three-dimensional (3D) RMDS via a triple-waveguide directional coupler, consisting of a lower doped silicon waveguide, a central plasmonic horizontal-slot waveguide with indium-tin-oxide (ITO) and an upper doped polycrystalline-silicon waveguide. The enhanced light-matter-interactions can be achieved via the central plasmonic metal-oxide-semiconductor (MOS) mode. The multiplexing states of the proposed 3D-RMDS can be switched by adjusting the applied voltage bias on the ITO layer. The simulation results reveal that a 3D quasi-TM 0 and quasi-TM 1 RMDS is with a compact length of 8.429 μm, the mode crosstalk of -20.3 dB (-9.2 dB) and the insertion loss of 0.06 dB (1.47dB) at the wavelength of 1550 nm for the "OFF" ("ON") state, respectively. The proposed 3D-RMDS can be applied in future 3D on-chip MDM networks to achieve a flexible mode-routing and further enhance the transmission capacity.