
Ultra-broadband terahertz absorption using bi-metasurfaces based multiplexed resonances
Author(s) -
Dandan Jia,
Jia Xu,
Xiaomei Yu
Publication year - 2018
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.26.026227
Subject(s) - terahertz radiation , materials science , optics , broadband , absorption (acoustics) , optoelectronics , resonator , multiplexing , full width at half maximum , bandwidth (computing) , stacking , physics , telecommunications , nuclear magnetic resonance , computer science
In this paper, we demonstrate an ultra-broadband terahertz (THz) bi-metasurfaces absorber composed of two stacking metasurfaces backed by a metallic ground plane. The bottom metasurface consists of four multiplexed cross resonators with different geometries on a thin parylene layer, achieving a bandwidth of 3.80 THz with the absorption higher than 50% at high frequency. Meanwhile, the top metasurface, including two multiplexed cross resonators with different sizes on a relatively thicker parylene layer, provides a low frequency absorption band with an additional Salisbury screen absorption peak that connects the two absorption bands of the two metasurfaces, therefore enabling an ultra-broadband absorption. The experimental absorption spectrum of the bi-metasurfaces shows a bandwidth of 4.46 THz while the absorption exceeding 50% and a full width at half maxima (FWHM) of 97.7%. The ultra-broadband absorber will be a promising candidate for THz broadband detection.