z-logo
open-access-imgOpen Access
Time, space, and spectral multiplexing for radiation balanced operation of semiconductor lasers
Author(s) -
Zohreh Vafapour,
Jacob B. Khurgin
Publication year - 2018
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.26.024124
Subject(s) - lasing threshold , laser , optics , semiconductor laser theory , optoelectronics , materials science , semiconductor , multiplexing , gain switching , optical pumping , physics , computer science , telecommunications
Radiation balanced lasing (RBL) is an attractive pathway towards the development of high power and good beam quality lasers because heat removal via anti-Stokes luminescence (optical refrigeration) does not require additional connections and components and the heat is dissipated away from the active medium. Optical refrigeration had been demonstrated in the rare-earth doped laser medium but is far more difficult to achieve it in semiconductors laser medium. The main obstacle to achieve RBL in semiconductors is that the most efficient cooling occurs at relatively low carrier densities, while the gain required to sustain laser operation occurs at much higher densities. In this study, we explore the means of resolving this conundrum by separating the optical refrigeration and lasing in temporal, spatial, and/or spectral domains. Time multiplexing involves modulating the pump and operating the laser in pulse modes with lasing and cooling intervals. Space multiplexing involves having separate regions (quantum wells and dots) for lasing and cooling. The spectral multiplexing involves operating with two separate pumps - one for lasing and one for cooling. These methods will be compared in the study with the goal of selecting the optimal path RBL in semiconductor lasers.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here