Open Access
Non-homogeneous composite GMR structure to realize increased filtering range
Author(s) -
Linyong Qian,
Kangni Wang,
Guangyuan Wu,
Lin Zhu,
Caiqin Han,
Huaming Li
Publication year - 2018
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.26.023602
Subject(s) - materials science , grating , optics , rigorous coupled wave analysis , guided mode resonance , wavelength , diffraction grating , optoelectronics , lithography , holography , physics
A non-homogeneous composite guided-mode resonant (GMR) filter structure is proposed that avoids the multi-mode resonance effect and increases resonant wavelength tuning range. The composite filter structure is engineered using a combination of a varied-line-spacing (VLS) grating layer with a wedge-shaped waveguide layer. The grating is fabricated by holographic interference lithography (IL), while the wedge-shaped layer is fabricated using masked ion beam etching (MIBE) technology. The resonant wavelength has been observed to vary as a function of the spatial position on the structure. In the fabricated structure, over a length of 30 mm, the grating period increment is measured to be 149.2 nm, whereas the increment of the waveguide film thickness is approximately 100 nm. Experimental results show that a primary reflectance peak is achieved spanning a wavelength range of 805.8-1119.0 nm. The device is designed using the rigorous coupled-wave analysis (RCWA) method, and the proposed device is toward the practical application of GMR filters.