Photon-limited face image super-resolution based on deep learning
Author(s) -
Zhouzhou Niu,
Jianhong Shi,
Lei Sun,
Yan Zhu,
Jianping Fan,
Guihua Zeng
Publication year - 2018
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.26.022773
Subject(s) - computer science , artificial intelligence , ranging , computer vision , noise (video) , image resolution , deep learning , noise reduction , face (sociological concept) , image quality , pixel , pattern recognition (psychology) , optics , image (mathematics) , physics , telecommunications , social science , sociology
With one single photon camera (SPC), imaging under ultra weak-lighting conditions may have wide-ranging applications ranging from remote sensing to night vision, but it may seriously suffer from the problem of under-sampled inherent in SPC detection. Some approaches have been proposed to solve the under-sampled problem by detecting the objects many times to generate high-resolution images and performing noise reduction to suppress the Poission noise inherent in low-flux operation. To address the under-sampled problem more effectively, a new approach is developed in this paper to reconstruct high-resolution images with lower-noise by seamlessly integrating low-light-level imaging with deep learning. In our new approach, all the objects are detected only once by SPC, where a deep network is learned to reduce noise and reconstruct high-resolution images from the detected noisy under-sampled images. In order to demonstrate our proposal is feasible, we first select a special category to verify by experiment, which are human faces. Such deep network is able to recover high-resolution and lower-noise face images from new noisy under-sampled face images and the resolution can achieve 4× up-scaling factor. Our experimental results have demonstrated that our proposed method can generate high-quality images from only ~0.2 detected signal photon per pixel.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom