z-logo
open-access-imgOpen Access
Label-free real-time detection of biotinylated bovine serum albumin using a low-cost optical cavity-based biosensor
Author(s) -
Donggee Rho,
Seunghyun Kim
Publication year - 2018
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.26.018982
Subject(s) - biosensor , biotinylation , bovine serum albumin , streptavidin , materials science , detection limit , optics , optoelectronics , chemistry , nanotechnology , chromatography , biotin , physics , biochemistry
We have developed a low-cost optical cavity-based biosensor with a differential detection method for point-of-care medical diagnostics. To experimentally demonstrate its label-free real-time biosensing capability, we performed the detection of biotinylated bovine serum albumin (BSA). Streptavidin is introduced into the optical cavity structure and immobilized on 3-aminopropyltriethoxysilane (APTES) coated surface. After rinsing out unbound streptavidin with DI water, biotinylated BSA without any labeling is introduced. A CMOS camera captures the transmitted light of two different wavelengths passing through the optical cavity sensing area in real-time. Then, the differential values are calculated to enhance the responsivity. We successfully demonstrated the label-free real-time detection of biotinylated BSA, and the measurement results matched well with the simulation results. The limit of detection of the optical cavity-based biosensor for the biotinylated BSA detection with the sensing area of 180 μm × 180 μm is estimated to be 2.82 pM, which could be reduced further for a smaller sensing area with the tradeoff of a longer sensing time.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom