z-logo
open-access-imgOpen Access
Inter-polarization mixers for coherent detection of optical signals
Author(s) -
A. Melikyan,
Kwangwoong Kim,
Nicolas K. Fontaine,
S. Chandrasekhar,
Young-Kai Chen,
Po Dong
Publication year - 2018
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.26.018523
Subject(s) - optics , photonics , broadband , silicon photonics , local oscillator , interferometry , photonic integrated circuit , optoelectronics , physics , phase noise
Electro-magnetic (EM) mixers are fundamental building blocks in communication systems. They are used in frequency/wavelength filters, interferometric modulators, amplitude-phase receivers, to name a few. Traditional EM mixers have two or more input ports and work only for co-polarized signal and local-oscillator (LO) incident on its inputs. Here we report on novel designs, in silicon, of inter-polarization EM mixers operating at 1550 nm wavelength. The 180-degree optical mixer comprising a single input port is demonstrated to coherently mix orthogonally polarized signal and LO. Using the proposed 180-degree mixer, we report on a novel design for a 90-degree optical mixer on silicon with small footprint, broadband response, low loss and good fabrication tolerance. It exploits birefringence of a waveguide to achieve broadband and fabrication-tolerant 90° phase difference between the signal/LO relative phase in the in-phase and quadrature components. A monolithic silicon photonics coherent receiver is demonstrated using the reported 90-degree mixer, and its operation at 22 Gbaud and 44 Gbaud is shown. These mixers pave the way for novel coherent receiver architectures in long-haul, metro, passive optical networks and data-center interconnect applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom