z-logo
open-access-imgOpen Access
Inter-polarization mixers for coherent detection of optical signals
Author(s) -
Argishti Melikyan,
Kwangwoong Kim,
Nicolas K. Fontaine,
S. Chandrasekhar,
Young-Kai Chen,
Po Dong
Publication year - 2018
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.26.018523
Subject(s) - optics , photonics , broadband , silicon photonics , local oscillator , interferometry , photonic integrated circuit , optoelectronics , physics , phase noise
Electro-magnetic (EM) mixers are fundamental building blocks in communication systems. They are used in frequency/wavelength filters, interferometric modulators, amplitude-phase receivers, to name a few. Traditional EM mixers have two or more input ports and work only for co-polarized signal and local-oscillator (LO) incident on its inputs. Here we report on novel designs, in silicon, of inter-polarization EM mixers operating at 1550 nm wavelength. The 180-degree optical mixer comprising a single input port is demonstrated to coherently mix orthogonally polarized signal and LO. Using the proposed 180-degree mixer, we report on a novel design for a 90-degree optical mixer on silicon with small footprint, broadband response, low loss and good fabrication tolerance. It exploits birefringence of a waveguide to achieve broadband and fabrication-tolerant 90° phase difference between the signal/LO relative phase in the in-phase and quadrature components. A monolithic silicon photonics coherent receiver is demonstrated using the reported 90-degree mixer, and its operation at 22 Gbaud and 44 Gbaud is shown. These mixers pave the way for novel coherent receiver architectures in long-haul, metro, passive optical networks and data-center interconnect applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here