
Experimental simulation of ranging action using Si photonic crystal modulator and optical antenna
Author(s) -
Yuya Furukado,
Hiroshi Abe,
Yosuke Hinakura,
Toshihiko Baba
Publication year - 2018
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.26.018222
Subject(s) - optics , ranging , lidar , photonics , photonic crystal , electro optic modulator , materials science , photodiode , optical modulator , optoelectronics , physics , phase modulation , phase noise , telecommunications , computer science
Time of flight light detection and ranging (LiDAR) has been tested and used as a key device for auto-driving of vehicles. Frequency-modulated continuous-wave (FMCW) LiDAR potentially achieves a high sensitivity. In this study, we fabricated and tested two components of FMCW LiDAR based on Si photonics. The ranging action was also experimentally simulated. A Si photonic crystal slow light Mach-Zehnder modulator was driven by linearly frequency-chirped signals to generate quasi-frequency-modulated signal light. Then, the light was inserted into a fiber delay line of 20-320 m. Its output was irradiated to a photonic crystal slow beam steering device that acted as an optical antenna via a free-space transmission. The detected light was mixed with the reference light branched after the modulation in balanced photodiodes. A sufficiently sharp beat spectrum was observed, whose frequency well agreed with that expected for the delay line. The experimental simulation of the FMCW LiDAR, thus, was achieved.