z-logo
open-access-imgOpen Access
Learned phase coded aperture for the benefit of depth of field extension
Author(s) -
Shay Elmalem,
Raja Giryes,
Emanuel Marom
Publication year - 2018
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.26.015316
Subject(s) - computer science , depth of field , convolutional neural network , artificial intelligence , focus (optics) , coded aperture , computer vision , phase (matter) , aperture (computer memory) , optics , telecommunications , engineering , mechanical engineering , chemistry , physics , organic chemistry , detector
Modern consumer electronics market dictates the need for small-scale and high-performance cameras. Such designs involve trade-offs between various system parameters. In such trade-offs, Depth Of Field (DOF) is a significant issue very often. We propose a computational imaging-based technique to overcome DOF limitations. Our approach is based on the synergy between a simple phase aperture coding element and a convolutional neural network (CNN). The phase element, designed for DOF extension using color diversity in the imaging system response, causes chromatic variations by creating a different defocus blur for each color channel of the image. The phase-mask is designed such that the CNN model is able to restore from the coded image an all-in-focus image easily. This is achieved by using a joint end-to-end training of both the phase element and the CNN parameters using backpropagation. The proposed approach provides superior performance to other methods in simulations as well as in real-world scenes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom