
High speed adaptive optics ophthalmoscopy with an anamorphic point spread function
Author(s) -
Jing Lü,
Boyu Gu,
Xiaolin Wang,
Yuhua Zhang
Publication year - 2018
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.26.014356
Subject(s) - optics , adaptive optics , point spread function , frame rate , confocal , scanning laser ophthalmoscopy , human eye , image sensor , computer science , image resolution , retina , field of view , computer vision , physics
Retinal imaging working with a line scan mechanism and a line camera has the potential to image the eye with a near-confocal performance at the high frame rate, but this regime has difficulty to collect sufficient imaging light while adequately digitize the optical resolution in adaptive optics imaging. To meet this challenge, we have developed an adaptive optics line scan ophthalmoscope with an anamorphic point spread function. The instrument uses a high-speed line camera to acquire the retinal image and act as a confocal gate. Meanwhile, it employs a digital micro-mirror device to modulate the imaging light into a line of point sources illuminating the retina. The anamorphic mechanism ensures adequate digitization of the optical resolution and increases light collecting efficiency. We demonstrate imaging of the living human retina with cellular level resolution at a frame rate of 200 frames/second (FPS) with a digitization of 512 × 512 pixels over a field of view of 1.2° × 1.2°. We have assessed cone photoreceptor structure in images acquired at 100, 200, and 800 FPS in 2 normal human subjects, and confirmed that retinal images acquired at high speed rendered macular cone mosaic with improved measurement repeatability.