
Extraordinary optical reflection resonances and bound states in the continuum from a periodic array of thin metal plates
Author(s) -
Wei Zhang,
Aaron Charous,
Masaya Nagai,
Daniel M. Mittleman,
Rajind Mendis
Publication year - 2018
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.26.013195
Subject(s) - terahertz radiation , optics , resonator , reflection (computer programming) , physics , far infrared , total internal reflection , extraordinary optical transmission , materials science , plasmon , surface plasmon , surface plasmon polariton , computer science , programming language
The creation of artificial structures with very narrow spectral features in the terahertz range has been a long-standing goal, as they can enable many important applications. Unlike in the visible and infrared, where compact dielectric resonators can readily achieve a quality factor (Q) of 10 6 , terahertz resonators with a Q of 10 3 are considered heroic. Here, we describe a new approach to this challenging problem, inspired by the phenomenon of extraordinary optical transmission (EOT) in 1D structures. In the well-studied EOT problem, a complex spectrum of resonances can be observed in transmission through a mostly solid metal structure. However, these EOT resonances can hardly exhibit extremely high Q, even in a perfect structure with lossless components. In contrast, we show that the inverse structure, a periodic array of very thin metal plates separated by air gaps, can exhibit non-trivial bound states in the continuum (BICs) reflection resonances, with arbitrarily high Q, and with peak reflectivity approaching 100% even for a vanishingly small metal filling fraction. Our analytical predictions are supported by numerical simulations, and also agree well with our experimental measurements. This configuration offers a new approach to achieving ultra-narrow optical resonances in the terahertz range, as well as a new experimentally accessible configuration for studying BICs.