z-logo
open-access-imgOpen Access
Two-dimensional gold matrix method for encoding two-dimensional optical arbitrary positions
Author(s) -
Hao Li,
Changhe Zhou,
Shaoqing Wang,
Yancong Lu,
Xiansong Xiang
Publication year - 2018
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.26.012742
Subject(s) - matrix (chemical analysis) , binary number , algorithm , optics , sequence (biology) , gold code , pseudorandom number generator , mathematics , computer science , physics , materials science , arithmetic , telecommunications , biology , composite material , genetics , channel (broadcasting) , spread spectrum
In this study, a novel two-dimensional spatial coding pattern called two-dimensional Gold matrix method is proposed for general two-dimensional positioning. Considering the difficulty in representing a two-dimensional position in a single binary matrix, constructing a matrix while each submatrix refers to its location is a challenging mathematical problem. The general two-dimensional signal can be labeled by the two-dimensional Gold matrix, which results from a preferred pair of two m-sequences. For a pseudorandom m-sequence, the span-n property of the two-dimensional Gold matrix states that every n×n submatrix is unique and the decoding is fast and convenient. Numerical simulation and a proof-of-principle experiment are performed, and experimental results verified that the two-dimensional Gold matrix method is effective for high resolution and large range two-dimensional measurements.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom