z-logo
open-access-imgOpen Access
Double-hump solitons in fractional dimensions with a 𝒫𝒯–symmetric potential
Author(s) -
Liangwei Dong,
Changming Huang
Publication year - 2018
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.26.010509
Subject(s) - physics , nonlinear system , parity (physics) , symmetry (geometry) , phase (matter) , soliton , optics , quantum mechanics , condensed matter physics , mathematics , geometry
We investigate the properties of double-hump solitons supported by the nonlinear Schrödinger equation featuring a combination of parity-time symmetry and fractional-order diffraction effect. Two classes of nonlinear states, i.e., out-of-phase and in-phase solitons are found. Each class contains two families of solitons originating from the same linear mode in both focusing and defocusing nonlinear Kerr media. The critical phase-transition point increases monotonously with increasing Lévy index. For strong gain and loss, out-of-phase solitons in focusing media are stable in a wide parameter window and are almost completely unstable in media with a defocusing nonlinearity. The stability of in-phase solitons is opposite to that of out-of-phase solitons. In-phase solitons in defocusing media are stable in their entire existence domains provided that the gain-loss strength is below a critical value. Meanwhile, the stability region shrinks with the decrease of Lévy index. We, thus, put forward the first example of spatial solitons in fractional dimensions with a parity-time symmetry.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom