z-logo
open-access-imgOpen Access
Different surface plasmon coupling behaviors of a surface Al nanoparticle between TE and TM polarizations in a deep-UV light-emitting diode
Author(s) -
Wen-Yen Chang,
Yang Kuo,
Yufeng Yao,
C. C. Yang,
YuhRenn Wu,
YeanWoei Kiang
Publication year - 2018
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.26.008340
Subject(s) - scattering , surface plasmon , materials science , polarization (electrochemistry) , optoelectronics , optics , ultraviolet , light scattering , coupling (piping) , plasmon , diode , molecular physics , physics , chemistry , metallurgy
The formulations and numerical algorithms of a three-level model for studying the Purcell effect produced by the scattering of an air/AlGaN interface and the surface plasmon (SP) coupling effect induced by a surface Al nanoparticle in a two-polarization emission system to simulate the transverse-electric- (TE-) and transverse-magnetic- (TM-) polarized emissions in an Al x Ga 1-x N/Al y Ga 1-y N (y > x) quantum well (QW) are built. In reasonably selected ranges of Al content for an AlGaN QW to emit deep-ultraviolet (UV) light, the enhancement (suppression) of TE- (TM-) polarized emission is mainly caused by the SP-coupling (interface-scattering) effect. Different from a two two-level model, in the three-level model the TE- and TM-polarized emissions compete for electron in the shared upper state, which is used for simulating the conduction band, such that either interface-scattering or SP-coupling effect becomes weaker. In a quite large range of emission wavelength, in which the intrinsic emission is dominated by TM polarization, with the interface-scattering and SP-coupling effects, the TE-polarized emission becomes dominant for enhancing the light extraction efficiency of a deep-UV light-emitting diode.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom