Optimal integration of wide field illumination and holographic optical tweezers for multimodal microscopy with ultimate flexibility and versatility
Author(s) -
Sang-Hyuk Lee
Publication year - 2018
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.26.008049
Subject(s) - holography , optics , optical tweezers , digital holographic microscopy , microscopy , microscope , light sheet fluorescence microscopy , fluorescence microscope , laser , interference microscopy , optical microscope , materials science , physics , scanning confocal electron microscopy , fluorescence , scanning electron microscope
We introduce one-of-a-kind optical microscope that we have developed through optimized integration of wide-field and focused-light microscopies. This new instrument has accomplished operation of the same laser for both wide field illumination and holographic focused beam illumination interchangeably or simultaneously in a way scalable to multiple lasers. We have demonstrated its powerful capability by simultaneously carrying out Epi-fluorescence, total internal reflection fluorescence microscopy, selective plane illumination microscopy, and holographic optical tweezers with five lasers. Our instrument and the optical design will provide researchers across diverse fields, cell-biology and biophysics in particular, with a practical guidance to build an all-around multimodal microscope that will further inspire the development of novel hybrid microscopy experiments.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom