
ASI aurora search: an attempt of intelligent image processing for circular fisheye lens
Author(s) -
Xi Yang,
Xinbo Gao,
Bin Song,
Nannan Wang,
Yuan Dong
Publication year - 2018
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.26.007985
Subject(s) - computer science , artificial intelligence , convolutional neural network , computer vision , lens (geology) , search engine indexing , image processing , image (mathematics) , optics , physics
The circular fisheye lens exhibits an approximately 180° angular field-of-view (FOV), which is much larger than that of an ordinary lens. Thus, images captured with a circular fisheye lens are distributed non-uniformly with spherical deformation. Along with the fast development of deep neural networks for normal images, how to apply it to achieve intelligent image processing for a circular fisheye lens is a new task of significant importance. In this paper, we take the aurora images captured with all-sky-imagers (ASI) as a typical example. By analyzing the imaging principle of ASI and the magnetic characteristics of the aurora, a deformed region division (DRD) scheme is proposed to replace the region proposals network (RPN) in the advanced mask regional convolutional neural network (Mask R-CNN) framework. Thus, each image can be regarded as a "bag" of deformed regions represented with CNN features. After clustering all CNN features to generate a vocabulary, each deformed region is quantified to its nearest center for indexing. On the stage of an online search, a similarity score is computed by measuring the distances between regions in the query image and all regions in the data set, and the image with the highest value is outputted as the top rank search result. Experimental results show that the proposed method greatly improves the search accuracy and efficiency, demonstrating that it is a valuable attempt of intelligent image processing for circular fisheye lenses.