
Transverse optical forces and sideways deflections in subwavelength-diameter optical fibers
Author(s) -
Tong Xiao,
Hua Yu,
Yunyuan Zhang,
Zhiyuan Li
Publication year - 2018
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.26.006499
Subject(s) - transverse plane , oblique case , optics , optical force , optical fiber , finite difference time domain method , transverse mode , deflection (physics) , optical axis , optical tweezers , physics , laser , philosophy , linguistics , structural engineering , engineering , lens (geology)
We investigate transverse optical forces exerted on the endface of subwavelength-diameter (SD) optical fiber by using a finite-difference time-domain (FDTD) method. Detailed spatial distributions of transverse optical force along the fiber axis can now be accessible, based on which the dependence of transverse optical force on transverse cross sections, oblique-cut endfaces and high-order mode are carefully studied. Our numerical results demonstrate that either asymmetric cross section or oblique-cut endface would dominantly contribute to the transverse optical force and the corresponding sideways deflection of SD fiber, which is in good agreement with previous experimental observations. The novel behavior of transverse optical force by the high-order mode would give rise to new guidelines for constructing high-performance optomechanical devices.