z-logo
open-access-imgOpen Access
Observation of linear plasmonic breathers and adiabatic elimination in a plasmonic multi-level coupled system
Author(s) -
Itai Epstein,
Haim Suchowski,
Dror Weisman,
Roei Remez,
Ady Arie
Publication year - 2018
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.26.001433
Subject(s) - plasmon , wavefront , optics , physics , optoelectronics
We provide experimental and numerical demonstrations of plasmonic propagation dynamics in a multi-level coupled system, and present the first observation of plasmonic breathers propagating in such systems. The effect is observed both for the simplest symmetric case of a thin metal layer surrounded by two identical dielectrics, and also for a more complex system that includes five and more layers. By a careful choice of the permittivities and thicknesses of the intermediate layers, we can adiabatically eliminate the plasmonic waves in all the intermediate interfaces, thus enabling efficient vertical delivery and extraction of plasmonic signals between the top layer and deeply buried layers. The observation relies on controlling the excited mode by breaking the symmetry of excitation, which is crucial for obtaining the results experimentally. We also observe this breathing effect for transversely shaped plasmonic beams, with Hermite-Gauss, Airy and Weber wavefronts, that despite the oscillatory nature of propagation in such systems, still preserve all their unique wavefront properties. Finally, we show that such approaches can be extended to plasmonic propagation in a general multi-layered system, opening a path for efficient three-dimensional integrated plasmonic circuitry.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here