
Array-source X-ray velocimetry
Author(s) -
G. W. Goonan,
Andreas Fouras,
Stephen Dubsky
Publication year - 2018
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.26.000935
Subject(s) - optics , image resolution , velocimetry , temporal resolution , resolution (logic) , physics , field of view , tracking (education) , particle image velocimetry , focal length , computer science , turbulence , artificial intelligence , psychology , pedagogy , thermodynamics , lens (geology)
X-ray velocimetry (XV) has shown promise for investigations into various dynamic biological systems, including the motion of lungs and the flow of blood. Prior research in the field of XV has highlighted the need for both high spatial resolution to resolve features for tracking, and temporal resolution for accurate velocity measurement. In X-ray imaging systems, enhancement of spatial and temporal resolution requires a small focal spot size and high power output respectively, increasing anode power density requirements. In this paper, we present a multi-source XV regime whereby simultaneously illuminating a sample with multiple sources of small focal spot size, overall illumination can be increased whilst maintaining minimal source blurring without increasing power density requirements. Through a series of simulations, we demonstrate the capability for multi-source systems under various practical constraints, such as focal spot size and power density, to provide increased accuracy compared to single source systems.